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ABSTRACT Doubt is raised concerning the range of
validity of a stability criterion for non-equilibrium states
which has been proposed by Glansdorff and Prigogine.
In the case of a particular autocatalytic reaction, the sta-
bility analysis presented by Glansdorff and Prigogine, and
by Eigen and by Katchalsky in their reviews of this prob-
lem, does not agree with our analysis, which is based upon
exact solution of the relevant rate equations. We also find
disagreement between the analysis based upon the Glans-
dorif-Prigogine criterion and our analysis of a second ex-
ample which involves non-equilibrium steady states.
The situation is quite delicate because seemingly innocent
approximations (e.g., the use of specialized conditions
in the autocatalytic reaction X + Y T 2X discussed in the
sequel) may lead to the impression that the scope of va-
lidity of the criterion is wider than it actually is. By con-
sidering the stability of the equilibrium state, we conclude
that the second differential of the entropy, which is at
the heart of the Glansdorff-Prigogine criterion, is likely
to be relevant for stability questions close to equilibrium
only.

During the last decade Prigogine and coworkers have been
attempting to develop a theory for non-equilibrium thermo-
dynamical phenomena which would be valid far from full
equilibrium, and which would apply both to closed systems
which asymptotically approach equilibrium, and to systems
subject to inputs or constraints such that these systems devel-
oped, asymptotically in time, steady states. These efforts re-
sulted in the publication of a book, Thermodynamic Theory
of Structure, Stability, and Fluctuations (1), which presented
the accomplishments as of 1971. At about the same time,
Eigen (2) presented a theory for biomolecular evolution which
stressed the importance of the theory developed by Prigogine,
Katchalsky (3) wrote an essay which reviewed its essential
points in the case of chemical rections, and Nicolis (4) wrote
a critical review article for the entire subject.

Certain explicit and implicit claims regarding this theory
(1-5) have led us to assess its range of validity and it is our

purpose in this paper to present some of our considerations.
We do so by examining the stability properties of a particular
autocatalytic chemical reaction which has been discussed as

an example by Prigogine (1), Eigen (2), and Katchalsky (3).
When the Glansdorff-Prigogine criterion for stability is ap-
plied to this example, it is found that there is a region of
instability far from full equilibrium. The autocatalytic nature
of the reaction is offered as the basis for the instability. We find
that the rate equations for this example may be solved exactly
for all values of the concentration variables, and that the
exact solution exhibits stability throughout a region whose
stability cannot be determined by the Glansdorff-Prigogine

criterion. When another example, of the type considered by
Glansdorff, Prigogine, and Nicolis (1, 4), is examined we find a
regime of stable steady states on the basis of "normal mode"
analysis, which their stability criterion, based upon the so-
called excess entropy production, cannot demonstrate is
stable. These results strongly emphasize that the Glansdorff-
Prigogine criterion for stability is at best only a sufficient condi-
tion for stability, a fact recognized, but not sufficiently stressed
by Glansdorff and Prigogine, and so the violation of this cri-
terion does not necessarily imply the lack of stability. We
believe that a stability criterion based upon the second differ-
ential of the entropy provides a useful condition only in a neigh-
borhood of full equilibrium, and it does so there because of its
initimate connection with the second law of thermodynamics.
For general non-equilibrium states, the examples treated in
this paper show that the time derivative of the second differ-
ential of the entropy may be either positive or negative, and
that a negative sign does not imply instability. These points
will be detailed in the following sections.

Autocatalytic reaction example

In this section we present the details of the particular auto-
catalytic reaction which has been used as an example for the
Glansdorff-Prigogine stability criterion. The reaction is an
autocatalytic isomerization

IC
X + Y t; 2X

It is presumed that the reaction proceeds at constant tempera-
ture and pressure, and it is, therefore, governed by the Gibbs
free energy. Since there is no external flow of molecules, the
total number of molecules is constant. Therefore, if the num-
ber of molecules of types X and Y are denoted by a and ,3
respectively, then a + a = C where C is constant. The rate of
reaction, J, is defined by J dal/dt and is given by

J = ka - k'xa2

This may be reexpressed as

da/dt = (k + k')a(a* - a)

[1]

[2]
where a* = kC/(k + k'). The rate, da/dt, is a quadratic func-
tion of a and is shown diagrammatically in Fig. 1. The equi-
librium value is clearly a*, and a = 0 corresponds with a

metastable steady state which we shall not consider further.
The affinity for this reaction is defined by

A(a) = KBT ln(K/Q) [3]
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where KB is Boltzmann's constant, T is the absolute tempera-
ture, K= k/k' and Q =- a/,8. Since the differential ofthe Gibbs
free energy, G, is related to the affinity by dG = -Ada (6),
one obtains

dG/dt = -AJ

= -k'a2KBT [(K/Q) - 1] In (K/Q)

< 0

[4]

The final inequality follows from the fact that (x - 1) and
In x always have the same sign, and equality occurs when
(K/Q) = 1, which is the condition for equilibrium. Eq. [4]
represents the second law of thermodynamics for this reaction.
We have used a free energy, G, which as a function of a has
the same form for non-equilibrium states as it does in equi-
librium. This is in keeping with the spirit of the assumption of
local equilibrium which is made throughout discussions of
these problems (1, 4).

The Glansdorff-Prigogine Criterion

The reaction just described is said to be stable in the sense of
Liapunov (7) if given any e > 0 there exists a > 0 such that
whenever Ia(O) - a*I < 6 then la(t) - a*I < e for all t > 0.

This may be generalized somewhat by expressing stability
with: given any e > 0 there exists > 0 such that whenever
Iail(O) - a2(0)l < 6 then jal(t) - a2(t) < e for all t > 0 (7).
A Liapunov function for this reaction is any function of a,

L(a), such that L(a) is negative semi-definite and d[L(a) ]/dt
is positive semi-definite. If a Liapunov function, L(a), exists
for this reaction, then a theorem states that the reaction is
stable in the sense of Liapunov (7). The Glansdorff-Prigogine
criterion for stability is based upon exhibiting a Liapunov
function for the reaction.

Glansdorff and Prigogine argue for the existence of a gen-

eral, universal Liapunov function suitable for analysis of
arbitrary reactions. We briefly outline the construction of this
Liapunov function for chemical reactions of the type being
considered. Let the free energy, G, be a function of tempera-
ture, T, pressure, P, and the numbers of molecules of types i,
Ni. Therefore, the variation of G around its value at To, PO,
and Ni0, up to second order is

G = Go + G +±1/262G [5]

where Go is the value of G at T', PO, and N10, and

G =-ST + V6P + jii S6N [6]

wherein the entropy S -(- , the volume V-
OT P°NiO

(b) and the chemical potentials ,i= (-)
26P TO,N,° bNi T°P°Ni°0i'

and

62G = S6T + SVSP + U i N16Nj + E Tuo

X 6T6Ni + 6P6N1 [7]

which follows from Eq [6] because 62T = 62P = 62N1 = 0

since these are the independent variables. Clearly, at constant

-C2k, l

Fig. 1. The rate of the autocatalytic reaction X + Y :± 2X
as a function of a, the concentration of X. a varies between 0 and c

and has the equilibrium value a*.

temperature and pressure we get

62G = E N)S6Nj [8]

Using the Gibbs relation for the total differential of the en-

tropy, S, as a function of the independent variables, E, V, and
Ni

TSS = 6E + P6V ,ujN
i

leads to (8)

62S = 6T-' 6E +6 (P/T)6V - 6(& )6 N,

which at constant temperature and pressure becomes

62S = ( o 6Ni6Nj
Toi (N

[9]

[10]

[11]

Comparing [8] and [11] shows that - T062S = 62G. Conse-
quently, in the following we shall be concerned with the second
differential of the entropy, 62S, rather than with the second
differential of the free energy, 62G. The definition of the chem-
ical potential, lsi (6G/IN1) and the assumption of local
equilibrium which justifies using these expressions to describe
non-equilibrium states imply that buM/bNj = b2G/bNbNj, is
symmetric in i and j and is positive as is the case near full
equilibrium.

Consequently, Eq. [11] implies that 62S is negative semi-
definite not only close to full equilibrium, but in general, and
it is this observation that is of unquestioned novelty. Re-
turning to Eqs. [4] and [5], it is seen that close to full equi-
librium where 5G = 0 that

d 62G = To d 62S < 0.

dt dt -
[12]

Therefore, at least close to full equilibrium d(62S)/dt > 0 and
62S may serve as a Liapunov function. Glansdorff and Prigo-
gine suggest that because 62S is negative semi-definite even

far from full equilibrium, then perhaps it is a Liapunov func-
tion everywhere (9).

Before we apply the Glansdorff-Prigogine criterion to the
autocatalytic reaction described earlier, it is necessary to re-

express Eq. [12] in still another form. This new form intro-
duces the reaction rates and affinities into the stability cri-

Xa*/4 -

-o 0
-1
c
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Xo
Fig. 2. The hatched area gives the regime of steady states for

the reaction scheme discussed in the text. The cross-hatching
indicates the region for which -1 < Q < 0

terion. Suppose that the molecules given by Ni engage in reac-
tions p with rates Jp and stoichiometric coefficients vi, (10).
The rate equations are then

d
-No = E vipJp [13]
dt p

The affinities are defined by ref. 10

AP -E iP'U [14]

where us is the chemical potential for molecular species i.
Therefore, returning to Eq. [11], and using Eqs. [13] and
[14] gives

d 16Ad2S ETodtL) N oNij [15]

dt To I. a>ojdtbAj
dto E E dt

2 d

= 0EAp-Jp
To ,

Up

In Eq. [15] the second equality involves the symmetry of
bujs/Nj with respect to i and j, and d/dt (bjj/bNj)o = 0.
The third equality uses 5jsu=-(bMi/bNj)o6Nj, the fourth

uses Eq. [13], and the last equality uses Eq. [14]. Therefore,
the stability criterion can be expressed as

E W~pbAp > O. [6
Up

Glansdorff and Prigogine suggest, and Eigen asserts, that a
violation of inequality [16] is closely related to instability (11,
12).

In the case of the autocatalytic reaction Eqs. [1] and [3]
provide for 5A andU

bA = - KBTC Sa [17]
a(a*-2a)

U. = (k + k') (a* - 2a) ba

Now, in the far from full equilibrium regime given by a <
a*/2 it is clear from Eq. [17] that 5A5J < 0! Therefore, it has
been asserted that in this regime the reaction shows insta-
bility (11-13). If it were so that MAUJ < 0 remained true for
all future times, then instability would indeed be implied by
the First Instability Theorem of Liapunov (14). However, in
all three of the references given this persistence of MAUJ < 0
is achieved by entirely neglecting the reverse reaction through-
out all future time by taking k' = 0 and by fixing the con-
centration of Y so that no steady states can occur. In the
next section we shall expand on this point further.

Exact treatment of the autocatalytic reaction

Eq. [2] admits of an exact solution if one uses the elementary
techniques of separation of variables and the method of partial
fractions. The solution of Eq. [2], as may be seen by substitu-
tion, is

[18](*) a[1-[exp(- [ (0)

where a(0) is the initial value, and X = (k + k')a* = kG.
For a(O) < a* the solution monotonically approaches a*
from below, whereas for a(O) > a* the solution monotonically
approaches a* from above. If we return to the Liapunov
characterizations of stability (7, 9), we see that for stability
we meet the required condition because Eq. [18] gives mono-
tone behavior. Moreover, from Eq. [18] it follows that

lai(t) - a2(t)j = ai(O) - a2(0)jai(t)a2(t) exp (-Xt) [19]
a * al(O)a2(0)

Therefore, in the interval [a, C] where a> 0 we have

ail(t) - a2(t) < Ial(O) - a2(0)1C2 exp (-Xt)
a*I a2

[20]

Inequality [20] implies that given e > 0, then if a =
a2e/C2a*, then Iai(O) - a2(0)1 <5 implies that Iai(t) - a2(t)I
< e exp (-fXt) < e for all t > 0. This is clearly valid even for
a < a < a*/2! In this regime it is true that if a < ai(O) <
a2(0) < a*/2, then, as can be seen in Fig. 1, a2(t) initially
moves away from al(t) until they reach the a*/2 point where
they begin to close together again as their rates decrease.
However, this initial separating motion is not instability
since it may be properly bounded as shown here, above.
Moreover, as soon as a(t) reaches a*/2 then SJ changes sign
and SAJ> 0 is true for all future times. This is obscured by
the reaction conditions used by Prigogine, Eigen, and
Katchalsky (11-13). The separating motion for a < a < a*/2
is a result of the autocatalytic nature of the reaction, and even
though it does not imply instability in the sense of Liapunov,
as we have shown, it is nevertheless qualitatively different
behavior than for a*/2 < a < C. Katchalsky has stressed
this point, and it is reflected in the change of sign in UJSA, but
Liapunov-stability is not violated.
The Liapunov-stability conditions are known to be sufficient

conditions (15, 16), and while this point appears in Glansdorff
and Prigogine's theory, it is not in our opinion sufficiently
stressed to prevent inadvertent misapplication.
A steady state example
So far we have only treated the far from full equilibrium be-
havior of a reaction which ultimately goes to equilibrium.
In this section we shall treat another reaction model of the
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type considered by Glansdorff and Prigogine (17). The reac-
tion are

[a] A z X

[b] Y + 2X ± 3X

[cI

[d]

B + X 4 Y + D

X T E

The rate constants for the forward reactions are all unity ant
the reverse reactions all have rate constants equal to k. Non
equilibrium steady states are achieved by fixing the concen
trations of A, B, C and E, and it is presumed for convenienc,
that E = A/k2. We shall denote the number of molecules o
types A, B, D, E, X, and Y by A, B, D, E, X and Y respec
tively. The steady state values of X and Y, to be denoted b:
Xo and Yo, are given by Eq. [17]

Xo = A/k and Yo = Xo(kXo2 + B)/(Xo2 + kD) [21

Normal mode analysis is performed by linearizing the rat4
equations around the steady state values for X and Y, fol
lowed by determination of the eigenvalues of the resulting
2 X 2 coupling matrix. The eigenvalue equation is

c2 + [Xo2 + B + 1 - 2XoYO + k(3Xo2 + D + 1)1]
+ (1 + k) (Xo2 + kD) = 0 [22

Stability, according to normal mode analysis, requires that the
real parts of the solutions to Eq. [22] be negative. If the real
part of either root is positive, then the steady state is not
stable.
The Glansdorff-Prigogine criterion for stability requires

that we look at db2S/dt = (2/T) E 6J6A . The reaction rates

and affinities for the reactions [a], [b ], [c ], and [d I are
Ja = A - kX

Jb = X2Y - kX8

J, = BX - kYD

Jd= X - kE

Aa = KBT In (A/kX)

Ab = KBT In (Y/kX)

A, = KET In (BX/kYD)

Ad = KBT In (X/kE)

Eqs. [231 lead to

d a 2S =
2

E JSA
dt T

= KB [(k + 1 + B + 3kXo2 - 2XoYo)/XoI(bX)2
+ KB [(YoXo2 - BXo - kDYo - 3KXo3)/YoXo]

X (6X)(5Y) + KB [(XO2 + kD)/Yo](8Y)2 [24]

This expression is not positive semi-definite for all possible
steady states because the (6X)2 coefficient may sometimes be
negative. We shall proceed to show that there are steady
states for which the coefficient of (6X)2 is negative, but for
which the corresponding solutions to Eq. [22] have negative
real parts.

In order to simplify the algebra we consider the special
case of D = 0. The steady state Eqs. [211 become

Xo = A/k and Yo = A + Bk/A [25]

This implies that X0 can have any positive value and that for
a given value of Xo, Yo can have any value greater than kXo.
Therefore, the manifold of possible steady states is the set of

Ld

I-

,e
)f

Fb

all points on or above the Yo = kXo line in the Xo - Yo plane
as shown in Fig. 2. We partially delineate the subregion of
steady states for which d(62S)/dt contains a negative coeffi-
cient for (5X) 2. Eq [24] shows this subregion to be determined
by

[26]k + 1 + B + 3kXo2 - 2XoYo < 0

which in conjunction with Eq. [251 becomes

Q = k + 1 + 2kXo2 - YOXo <0

For a given value of Xo all values of Yo which are greater
than 2kXo + (k + 1)/Xo will satisfy Eq. [27]. This region is
entirely within the set of possible steady states and the region
for which Q falls between zero and minus one is shown by the
cross-hatching in Fig. 2. Thus, within this special subregion
d(62S)/dt is an indefinite form which can be negative. Glans-
dorff and Prigogine would suggest that this could be a

threat to stability. However, returning to Eq. [22 ], with D = 0,

we find that the normal mode analysis leads to the eigenvalue
equation

(A2 + [Xo2 + Q]w + (1 + k)Xo2 = 0 [28]

Therefore, in the region where -1 < Q < 0, if Xo > 1, then
the roots to Eq. [28] have negative real parts, which implies
stability. Consequently, we find the Glansdorff-Prigogine
stability criterion to be of no value for these steady states. In
particular it seems to us not justified to consider MAUJ to be a

Liapunov function or and to use it to determine the limits of
stability.

Concluding remarks

We feel that the qualms presented here deserve consideration
because of the intricacy and delicacy of the problem of sta-
bility. In our presentation of the derivation of the Glansdorff-
Prigogine stability criterion we have indicated why it is
plausible that this criterion may only apply close to full
equilibrium where the second law of thermodynamics, as
represented by Eq. [4], implies that 52S is indeed a Liapunov
function. Near steady states which are far from equilibrium,
there is no guarantee that d(62S)/dt will behave appro-

priately. Indeed, our examples show that it does not and that
extreme caution is indicated. We feel that this reflects the fact
that stability far from equilibrium requires kinetic, in addi-
tion to purely thermodynamic, considerations.

The authors are grateful to Mark Kac, E. G. D. Cohen, and
George Uhlenbeck for their constructive criticisms during the
writing of this manuscript.
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